–506.
J. (1951). Ratios involving extreme values, Annals of Mathematical Statistics,
pp. 68–78.
Zhu, G., Chen, C., Tong, J., Jiao, Y. and Du, S. (2018). Introducing chaos
avior to kernel relevance vector machine (RVM) for four-class EEG
ssification, PLoS One, 13, pp. e0198786.
A. V. and Kashid, D. N. (2010). Alternative method for choosing ridge
ameter for regression, Applied Mathematical Sciences, 4, pp. 447 – 456.
, C. and Holte, R. C. (2000). Explicitly representing expected cost: an
rnative to roc representation, Proceedings of the Sixth ACM SIGKDD
ernational Conference on Knowledge Discovery and Data Mining, pp. 198–207.
O., Hart, P. E. and Stork, D. G. (2000). Pattern Analysis. (Wiley-Interscience,
w York).
R. (1984). A turning point in cancer research: sequencing the human genome,
ence, 231, pp. 1055–1056.
. (1973). A fuzzy relative of the ISODATA process and its use in detecting
mpact well-separated clusters, Journal of Cybernetics, 3, pp. 32–57.
Albury, C. L., Maksemous, N., Benton, M. C., Sutherland, H. G., Smith, R. A.,
upt, L. M. and Griffiths, L. R. (2018). Next generation sequencing methods for
gnosis of epilepsy syndromes, Frontiers in Genetics, 9, pp. 20.
Martnez, A., Birrer, M. and Linnoila, R. (2001). In situ detection of
xpected patterns of mutant p53 gene expression in non-small cell lung
cers, Oncogene, 20, pp. 2579–2586.
979). Bootstrap methods: another look at the jackknife, The Annals of Statistics,
p. 1–26.
Hastie, T., Johnstone, I. and Tibshirani, R. (2004). Least angle regression, Annals
Statistics, 32, pp. 407–99.
nd Stein, C. (1981). The Jackknife Estimate of Variance, The Annals of Statistics,
p. 586–596.
(2002). DNA methylation in cancer: too much, but also too little. Oncogene,
pp. 5400–5413.
. L., Van Houdt, W. J., Vries, R. G., Hoogwater, F. J., Govaert, K. M., Verheem,
Nijkamp, M. W., Steller, E. J., Jimenez, C. R., Clevers, H., Rinkes, I. H. and
anenburg, O. (2011). Differentiated human colorectal cancer cells protect tumor-
iating cells from irinotecan, Gastroenterology, 141, pp. 269–278.
ri, P. P., Mizutani, S., Shiroma, H., Shiba, S., Nakajima, T., Sakamoto, T., Saito,
Fukuda, S., Yachida, S. and Yamada, T. (2020). Influence of gastrectomy for
tric cancer treatment on faecal microbiome and metabolome profiles, Gut, (in
ss).
A. V. and Spirov, A. V. (2021). Modeling SELEX for regulatory regions using
yal Road and Royal Staircase fitness functions, Biosystems, 200, pp. 104312.